Public Health - Santé Publique
84.8K views | +0 today
Follow
Public Health - Santé Publique
Your new post is loading...
Your new post is loading...
Rescooped by Lionel Reichardt / le Pharmageek from healthcare technology
Scoop.it!

Anatomy of digital contact tracing: Role of age, transmission setting, adoption, and case detection

Anatomy of digital contact tracing: Role of age, transmission setting, adoption, and case detection | Public Health - Santé Publique | Scoop.it

Contact tracing aims to avoid transmission by isolating, at an early stage, only those individuals who are infectious or potentially infectious, to minimize the societal costs associated with isolation. Considerable resources are therefore directed at improving surveillance capacities to allow efficient and rapid investigation and isolation of cases and their contacts. To enhance tracing capacities, the use of digital technologies has been proposed, leveraging the widespread use of smartphones. Therefore, proximity-sensing applications have been designed and made available to automatically trace contacts, notify users about potential exposure to COVID-19, and invite them to isolate.


 


The efficacy of digital contact tracing against coronavirus disease 2019 (COVID-19) epidemic is debated: Smartphone penetration is limited in many countries, with low coverage among the elderly, the most vulnerable to COVID-19.


 


Quantifying the impact of digital contact tracing is essential to envision this strategy within a wider response plan against the COVID-19 epidemic.


 


We modeled this intervention together with household isolation assuming a 50% detection of clinical cases. In a scenario of high transmissibility (R = 2.6), we found that household isolation by itself would produce a reduction in peak incidence of 27%, while the inclusion of digital contact tracing could increase this effect by 30% for a reasonably achievable app adoption (~20% of the population) and by 144% for a large-scale app adoption (~60%). At a moderate transmissibility level (R = 1.7), the app would substantially damp transmission (36 to 89% peak incidence reduction for increasing app adoption), bringing the epidemic to manageable levels if adopted by 32% of the population or more.


 


The app-based tracing and household isolation have different effects across settings, the first intervention efficiently preventing transmissions at work that are not well targeted by the second.


 


Moreover, app-based contact tracing also yields a protection for the elderly despite the lower penetration of smartphones in this age category.


 


These results may inform the inclusion of digital contact tracing within a COVID-19 response plan.


 


read the study at https://advances.sciencemag.org/content/7/15/eabd8750


 

Lire l'article complet sur : advances.sciencemag.org


Via nrip
nrip's curator insight, June 16, 2021 12:06 AM

Contact tracing works, if done right. In the early stages of the pandemic, a number of issues with contact tracing were seen. A majority of them were to do with the lack of knowledge/training about how to carry it out And the magnitude of the task it entailed for a set of untrained workers. 

 

A contact tracing strategy must be built into public health surveillance systems and evolved to be with the times whenever needed, with the hope that it is not needed.

Rescooped by Lionel Reichardt / le Pharmageek from healthcare technology
Scoop.it!

Analyzing the Essential Attributes of Nationally Issued COVID-19 Contact Tracing Apps

Analyzing the Essential Attributes of Nationally Issued COVID-19 Contact Tracing Apps | Public Health - Santé Publique | Scoop.it

Contact tracing apps are potentially useful tools for supporting national COVID-19 containment strategies. Various national apps with different technical design features have been commissioned and issued by governments worldwide.



Objective: Our goal was to develop and propose an item set that was suitable for describing and monitoring nationally issued COVID-19 contact tracing apps.


 


This item set could provide a framework for describing the key technical features of such apps and monitoring their use based on widely available information.



Methods: We used an open-source intelligence approach (OSINT) to access a multitude of publicly available sources and collect data and information regarding the development and use of contact tracing apps in different countries over several months (from June 2020 to January 2021). The collected documents were then iteratively analyzed via content analysis methods. During this process, an initial set of subject areas were refined into categories for evaluation (ie, coherent topics), which were then examined for individual features.


 


These features were paraphrased as items in the form of questions and applied to information materials from a sample of countries (ie, Brazil, China, Finland, France, Germany, Italy, Singapore, South Korea, Spain, and the United Kingdom [England and Wales]). This sample was purposefully selected; our intention was to include the apps of different countries from around the world and to propose a valid item set that can be relatively easily applied by using an OSINT approach.



Results: Our OSINT approach and subsequent analysis of the collected documents resulted in the definition of the following five main categories and associated subcategories:


 


(1) background information (open-source code, public information, and collaborators);


 


(2) purpose and workflow (secondary data use and warning process design);


 


(3) technical information (protocol, tracing technology, exposure notification system, and interoperability);


 


(4) privacy protection (the entity of trust and anonymity); and


 


(5) availability and use (release date and the number of downloads).


 


Based on this structure, a set of items that constituted the evaluation framework were specified. The application of these items to the 10 selected countries revealed differences, especially with regard to the centralization of the entity of trust and the overall transparency of the apps’ technical makeup.



Conclusions: We provide a set of criteria for monitoring and evaluating COVID-19 tracing apps that can be easily applied to publicly issued information. The application of these criteria might help governments to identify design features that promote the successful, widespread adoption of COVID-19 tracing apps among target populations and across national boundaries.


 


 read the study at https://mhealth.jmir.org/2021/3/e27232


 


 

Lire l'article complet sur : mhealth.jmir.org


Via nrip
nrip's curator insight, May 4, 2021 4:03 AM

Where a lot of studies falter, is they dont focus on ease of use as a primary criteria of evaluation. Digital Health tools for far too long have faced criticism due to the ease of use factor.

 

It takes several iterations for any app/tool to become easy to use when the use cases contain a lot of data input. As such, contact tracing tools will do well by being built over surveillance and data collection platforms like MediXcel Lite and Commcare.

 

The data collection platforms must also focus on contact tracing as a type of app they generate along with the longitudinal and case based apps they currently allow.