E-HEALTH - E-SANTE - PHARMAGEEK
287.1K views | +0 today
Follow

The roll of Medical imaging in personalized medicine

From pharmaceuticalintelligence.com

The future of personalized medicine comprise quantifiable diagnosis and tailored treatments; i.e. delivering the right treatment at the right time. To achieve standardized definition of what “right” means, the designated treatment location and lesion size are important factors.


This is unrelated to whether the treatment is focused to a location or general. The roll of medical imaging is and will continue to be vital in that respect: Patients’ stratification based on imaging biomarkers can help identify individuals suited for preventive intervention and can improve disease staging. In vivo visualization of loco-regional physiological, biochemical and biological processes using molecular imaging can detect diseases in pre-symptomatic phases or facilitate individualized drug delivery.


Furthermore, as mentioned in most of my previous posts, imaging is essential to patient-tailored therapy planning, therapy monitoring, quantification of response-to-treatment and follow-up disease progression. Especially with the rise of companion diagnostics/theranostics (therapeutics & diagnostics), imaging and treatment will have to be synchronized in real-time to achieve the best control/guidance of the treatment.


It is worthwhile noting that the new RECIST 1.1 criteria (used in oncological therapy monitoring) have been expanded to include the use of PET (in addition to lymph-node evaluation).


more at http://pharmaceuticalintelligence.com/2014/01/13/the-roll-of-medical-imaging-in-personalized-medicine/


No comment yet.

For Some Cancer Patients, Personalized Medicine Has Arrived

From www.livescience.com

New tools for analyzing genes are allowing doctors to personalize treatment for some lung cancer patients.


Imagine your doctor being able to scan your DNA from a biopsy and pinpoint the medicine that will work best for you. This type of high-tech approach is a clinical reality for advanced lung cancer at The Ohio State Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).


The technology, known as next generation "multiplex" gene sequencing, analyzes 50-plus genes in DNA extracted from a tumor biopsy for particular genetic mutations.


Previous technology required pathologists to analyze one mutation per tube in a sequencing reaction, but next-generation genome sequencing assesses more than 2,500 mutations in a single reaction. 


Knowing which mutations are present in lung tumors can help doctors tailor a patient's treatment to the unique genetic features present in his or her cancer cells.


The knowledge can also help in the development of new drugs that target previously unrecognized gene mutations in lung tumors. I often compare these genes to the gas pedal in a car — when activated, these genes make the cancer grow. By breaking the linkage between the gas pedal and the motor (or interfering with these "driver" mutations) with specific targeted drugs, doctors can stop this growth and often make the cancer shrink.


That's especially important in lung cancer because the majority of patients with this disease are diagnosed in the later stages, meaning it's important to start effective therapies quickly.


For example, a patient could be given a standard chemotherapy and expect a 25- to 30- percent response rate/shrinkage of a tumor. But if the treatment team knows that a patient has a mutation in a gene called EGFR, we can offer him or her a pill (erlotinib and afatinib are approved for this use in the United States), which has a 75-percent response rate and fewer side effects.


Gene sequencing is now considered the standard of care for stage-4 lung cancer patients at The OSUCCC – James and a handful of other centers across the United States — and several clinical trials evaluating molecular targeted therapies for patients with stage-3 lung cancers will soon start at The OSUCCC – James.


Lung cancer remains the number one cause of cancer death in the United States, and in the world, among both men and women. More than 200,000 cases are diagnosed annually in the United States. Each year during the month of November, physicians and others observe lung cancer awareness month, which sheds light on this terrible disease.

No comment yet.

FDA Helping to Advance Treatments Tailored to Patients

From www.fda.gov

Personalized medicine is the tailoring of a medical treatment to the individual characteristics, needs and preferences of a patient. Many recent advances involve using a patient's genetic information to guide his or her treatment.


Developing a truly personalized approach to patient care will require fundamental advances in the understanding of the biological, anatomical and physiological mechanisms that underlie disease, and how they are affected by environmental, genetic, social and cultural factors.


To describe its unique responsibilities and its efforts in facilitating the advancement of personalized medicine, the Food and Drug Administration (FDA) has released a new report entitled "Paving the Way for Personalized Medicine: FDA's Role in a New Era of Medical Product Development 


FDA's commitment to personalized medicine dovetails with its focus on advancing regulatory science, which is the science of developing new tools, standards and approaches to assess the safety, effectiveness, quality and performance of FDA-regulated products.


Here are some examples from the report of how FDA is using regulatory science to help speed the development of promising new personalized medicine therapies.


Virtual patient: Advances in medical imaging and the power of computers to create virtual, anatomically correct models of the human body have enabled the use of patient-specific computer simulations in clinical practice and medical device development. This has facilitated the creation of personalized, custom-built medical devices. FDA's Center for Devices and Radiological Health (CDRH) is developing a publicly available digital library of such models and simulations. This space for collaboration and sharing will help advance the personalization of medical device development and use.


Clinical Trial Designs and Methods: FDA is working to refine clinical trial design and statistical methods of analysis to address issues that often arise in the development of targeted therapeutics. The agency is also looking specifically at clinical trials for the development of cancer drugs. For example, FDA is participating in the "I-SPY 2 Trial," a groundbreaking clinical trial model that will help scientists quickly test the most promising drugs in development for women with rapidly growing breast cancers.


Biology of cancer: FDA's National Center for Toxicological Research (NCTR) conducts research to improve the understanding of cancer's underlying biology. A research project focused on the KRAS oncogene, for example, established that many tumors carry subpopulations of KRAS mutant cells, which can contribute to an acquired resistance to some cancer treatments.


Identification of genetic risk factors for vaccine reactions: FDA's Center for Biologics Evaluation and Research is involved in research collaborations that focus on identifying genetic risk factors associated with negative reactions to vaccines.


Genetics and cardiovascular risk: In collaboration with researchers at the University of Maryland, scientists at NCTR are conducting research to identify genetic factors that interact with common lifestyle factors—such as diet and drug exposure—to contribute to cardiovascular disease.


Personalized medicine for heart devices: Researchers at CDRH have made major advances in understanding the underlying biology of heart disease. They have used new methods to analyze electrocardiograms to identify the causes of heart disease and to predict which patients will benefit from specific cardiovascular treatments. These new methods are being used by outside research groups and may be used to design more efficient clinical trials in the future.


Joel Finkle's curator insight, November 25, 2014 10:33 AM

New FDA report on personalized medicine.  We're not quite to the home "autodoc" but more treatments will be tailored to each patient's genome, for greater safety, efficacy, and probably cost.